PLUG-IN 2010

U.S. Department of Energy's Advanced Vehicle Testing Activity Vehicle Testing and Demonstrations John Smart

Idaho National Laboratory

Presentation Outline

- Advanced Vehicle Testing Activity (AVTA) background, vehicle technologies, and testing methods
- PHEV demonstrations and testing
 - Background and methodology
 - Vehicle energy consumption and sensitivities
 - Vehicle charging demand and location
 - Controlled charging study findings
- Future outlook

AVTA Description

Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program. Conducted by:

Idaho National Laboratory (INL)

- Program execution in support of DOE goals
- Conducts engineering, data analysis, and reporting
- Ecotality North America (formerly eTec)
 - Private company based in Phoenix, AZ with access to numerous testing facilities / tracks
 - Conducts vehicle test operations and engineering
- ANL and ORNL provide AVTA dynamometer testing support and vehicle data acquisition support (ANL)

AVTA Description – cont'd

- AVTA tests light-duty whole vehicle systems and fueling infrastructures that employ:
 - Electric drive systems
 - Advanced energy storage systems
 - Advanced control systems (i.e., start/stop HEVs)
 Some ICE 100% Hydrogen and HCNG blended fuels
- Provide benchmark vehicle data to R&D programs, modelers, OEMs, battery manufacturers, and target/goal

setters (DOE)

- Assist early adopter fleet managers and the general public in making informed vehicle purchase, deployment and operating decisions. Presentations to industry groups, including via DOE's Clean Cities Coalitions
- DOE's only light-duty vehicle testing activity of new technologies deployed in whole-vehicle systems operated in real-world fleet environments

AVTA Testing by Technology

- Plug-in hybrid electric vehicles (PHEV)
 12 models, 259 vehicles, 1.5 million test miles
- Hybrid electric vehicles (HEV)
 - 18 models, 47 vehicles, 5 million test miles
- Full-size battery electric vehicles (BEVs)
 40 EV models, 5+ million test miles
- Neighborhood & Urban electric vehicles
 26 models, 1.2 million test miles
- Hydrogen internal combustion
 engine vehicles
 - 7 models, 500,000 test miles

14 million test miles have been accumulated on 1,600 electric drive vehicles representing 97 different electric drive models

ENERG

AVTA Vehicle Testing Approach

- Depending on vehicle technology and capabilities, vehicles are tested via:
 - Closed test tracks
 - Dynamometer testing
 - Laboratory testing (batteries)
 - Accelerated on-road testing
 - Fleet deployment and evaluation
- Graded approach (from the lab to the field) used to balance testing control, realism, sample size, and costs
- Publish testing results to simply and accurately
 - Document real-world petroleum reduction potentials
 - Document fuel and infrastructure use
 - Document life-cycle risks and costs

PHEV Testing

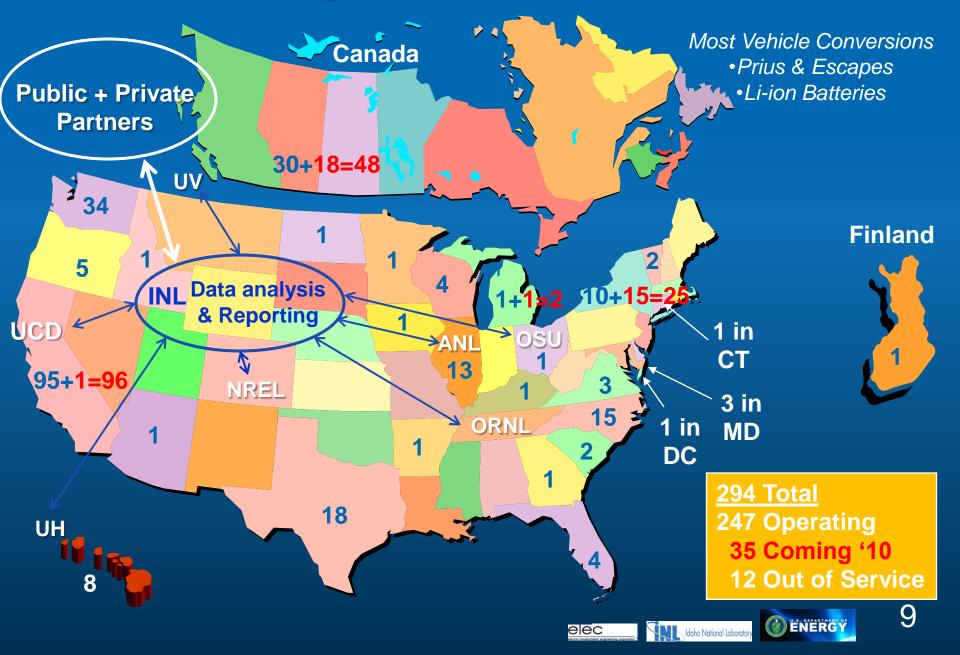
12 PHEV models tested to date

- Hymotion Prius (A123 Systems)
- Hymotion Escape (A123 Systems)
- EnergyCS Prius, 2 models (Valence and Altairnano)
- Electrovaya Escape (Electrovaya)
- Hybrids Plus Escape, 2 models (Hybrids Plus and K2 Energy Solutions)
- Hybrids Plus Prius (Hybrids Plus)
- Manzanita Prius, 2 models (lead acid and Thunder Sky)
- Renault Kangoo (Saft NiCad)
- Ford E85 Escape (Johnson Controls/Saft) (Lithium-ion unless noted)

Testing focus is on the PHEV technology concept and batteries, and driver and environmental impacts on fuel efficiencies and charging rates, not on individual PHEV conversions

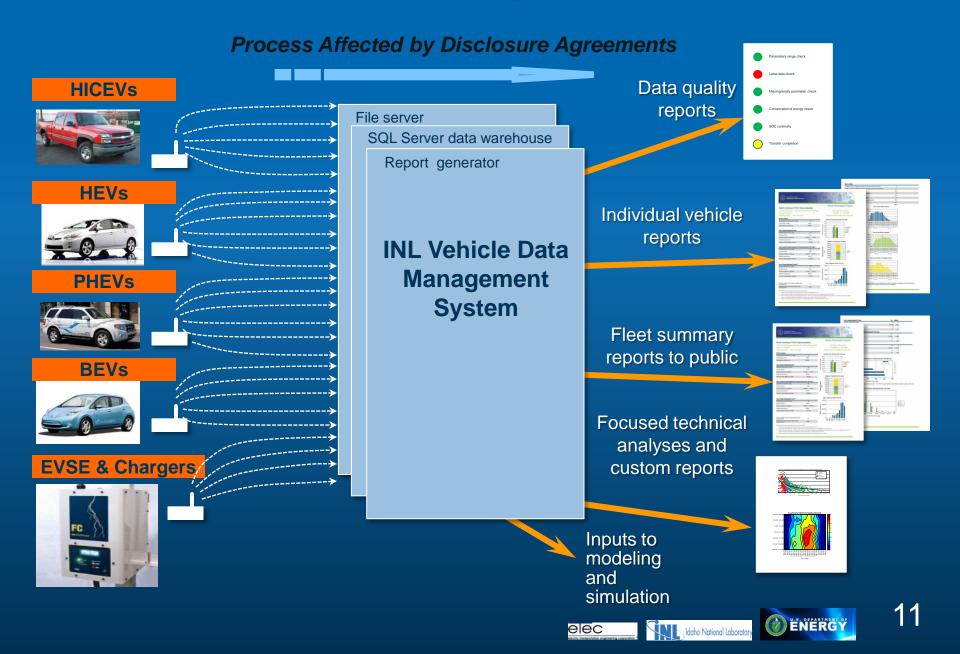
PHEV Testing Partners

- 259 PHEVs in 26 states, Canada, and Finland
- 1.5 million miles
- 93 PHEV testing partners include:
 - 38 Electric utilities
 - 10 County governments
 - 4 State governments
 - 10 Canadian government groups
 - 3 Sea ports and military bases
 - 2 PHEV conversion companies
 - 5 Private companies and advocacy organizations
- 2,500+ automated monthly PHEV 3-page summary reports have been generated and disseminated to testing partners, 1,176 reports disseminated just in FY09


- 9 City governments
- 10 Universities
- 2 Clean Air Agencies

ENERG

PHEV Testing / Demonstration Locations



Fleet Data Collection & Reporting Process

- INL is maintaining and enhancing automated data warehousing, analysis, and reporting process for fleet data
- Accommodates 6 different data transfer methods from a multitude of vehicle/data logger combinations:
 - 9 PHEV, 1 BEV, 1 EREV, 8 HEV, and 1 HICE models
 - 5 data logger makes/models in use, with development efforts started for 3 more
- PHEV reporting formats include 71 metrics describing energy use, driving patterns, and charging patterns
- Developed quality assurance/exploratory analysis tools
- Created flexible automated report generation processes for individual and multiple vehicle reports
- The PHEV onboard data collection system is growing at approximately 60 million records per month

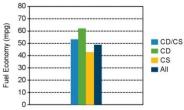
Vehicle Data Management Process

ENERGY Energy Efficiency & Renewable Energy

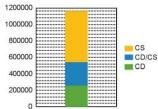
North American PHEV Demonstration

Fleet Summary Repo	ort: Hymotion Prius (V2Green data logger)
Number of vehicles:	182
Reporting Period:	Apr 08 - Feb 10

All Trips Combined


All Inps Combined		
Overall gasoline fuel economy (mpg)	49	
Overall AC electrical energy consumption (AC Wh/mi) ¹	59	
Overall DC electrical energy consumption (DC Wh/mi) ²	43	
Total number of trips	125,328	
Total distance traveled (mi)	1,161,489	
Trips in Charge Depleting (CD) mode ³		
Gasoline fuel economy (mpg)	62	
DC electrical energy consumption (DC Wh/mi) ⁴	140	
Number of trips	57,053	
Percent of trips city / highway	86% / 14%	
Distance traveled (mi)	261,411	
Percent of total distance traveled	23%	
Trips in both Charge Depleting and Charge Sustaining (CD/CS)	modes 5	
Gasoline fuel economy (mpg)	53	
DC electrical energy consumption (DC Wh/mi) 6	49	
Number of trips	10,749	
Percent of trips city / highway	47% / 53%	
Distance traveled (mi)	278,541	
Percent of total distance traveled	24%	
Trips in Charge Sustaining (CS) mode 7		

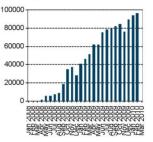
Gasoline fuel economy (mpg)	43
Number of trips	57,526
Percent of trips city / highway	74% / 26%
Distance traveled (mi)	625,034
Percent of total distance traveled	54%
Number of trips when the plug-in battery pack was turned off by the vehicle operator ⁸	3194
Distance traveled with plug-in battery pack turned off by the vehicle operator (mi) ⁹	103,635


Vehicle Technologies Program

Date range of data received: 4/18/2008 to 2/28/2010 Number of days the vehicles were driven: 675

Gasoline Fuel Economy By Trip Type

Distance Traveled By Trip Type



Miles Logged by Month This Year

Distance Traveled (mi)

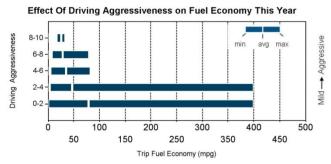
(ini

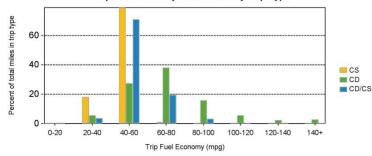
ince traveled

Notes: 1 - 9. Please see http://avt.inel.gov/phev/reportnotes for an explanation of all PHEV Fleet Testing Report notes.

1

PHEV 3-Page Report


- Report by charge mode:
 Charge depleting (CD)
 - Charge sustaining (CS)
 Mixed (CD/CS)
- All trips, 49 mpg, 59 AC Wh/mi & 43 DC Wh/mi
- CD, 62 mpg & 140 DC Wh/mi
- CD/CS, 53 mpg & 49 DC Wh/mi
- CS, 43 mpg
- Report represents 1.2 million Hymotion Prius test miles and 125,000 trips



ENERGY

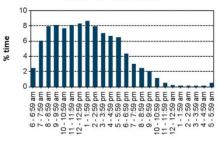
Trips in Charge Depleting (CD) mode	City	Highway
Gasoline fuel economy (mpg)	60	66
DC electrical energy consumption (DC Wh/mi)	165	109
Percent of miles with internal combustion engine off	29%	10%
Average trip aggressiveness (on scale 0 - 10)	1.7	1.7
Average trip distance (mi)	3.0	14.4
Trips in both Charge Depleting and Charge Sustaining (CD/CS) modes		
Gasoline fuel economy (mpg)	55	53
DC electrical energy consumption (DC Wh/mi)	80	44
Percent of miles with internal combustion engine off	24%	6%
Average trip aggressiveness (on scale 0 - 10)	1.8	1.6
Average trip distance (mi)	8.6	40.9
Trips in Charge Sustaining (CS) mode		
Gasoline fuel economy (mpg)	37	45
Percent of miles with internal combustion engine off	22%	5%
Average trip aggressiveness (on scale 0 - 10)	1.8	1.7
Average trip distance (mi)	3.6	31.8

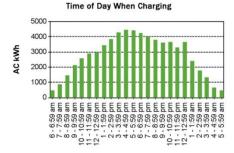
Aggressiveness factor is based on accelerator pedal position. The more time spent during a trip at higher accelerator pedal position, the higher the trip aggressiveness.

Trip Fuel Economy Distribution By Trip Type

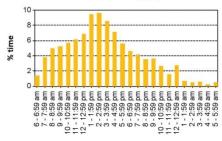
PHEV 3-Page Report

- Report fuel use by highway/city cycles and driver style
- CD city, 60 mpg (62%+), 165 DC Wh/mi
- CD highway, 66 mpg (47%+), 109 DC Wh/mi
- CS city, 37 mpg
- CS highway, 45 mpg
- Less aggressive driving (0 to 20%) averages ~80 mpg
 - (Aggressiveness = accelerator pedal position)





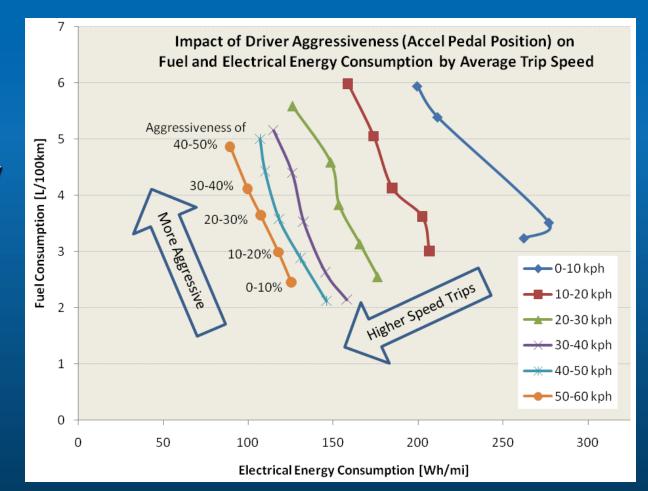
Plug-in charging


Average number of charging events per vehicle per month when driven	14	
Average number of charging events per vehicle per day when vehicle driven	1.0	
Average distance driven between charging events (mi)	44.8	
Average number of trips between charging events	4.8	
Average time plugged in per charging event (hr)	20.9	
Average time charging per charging event (hr)	2.8	
Average energy per charging event (AC kWh)	2.6	
Average charging energy per vehicle per month (AC kWh)	37.1	
Total number of charging events	25,928	
Total charging energy (AC kWh)	67,996	

Time of Day When Driving

PHEV 3-Page Report

- Report charging stats, time of day driving, and charging profiles
- Average 1 charging event per day when PHEV driven
- 44.8 miles between charge events
- 4.8 trips between charge events
- 2.8 hours per charge
- 20.9 hours time plugged in per charge
- 2.6 AC kWh per charge event



Driver Aggressiveness

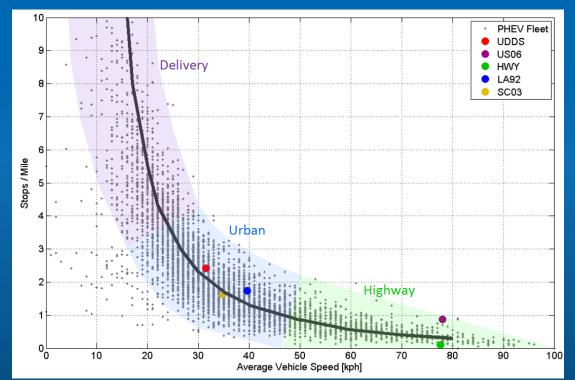
With increase in driver

aggressiveness

Fuel consumption increases
Wh/mi slightly decreases

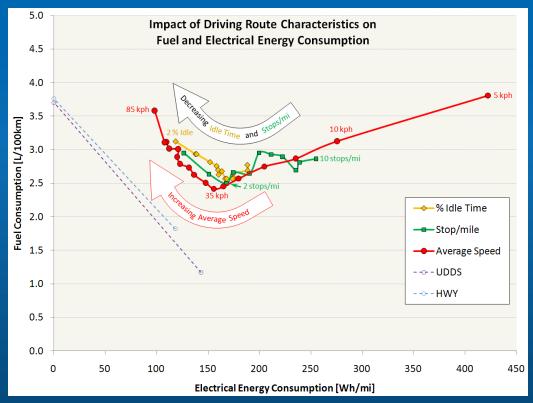
elec

15


ENERGY

Idaho National Laborator

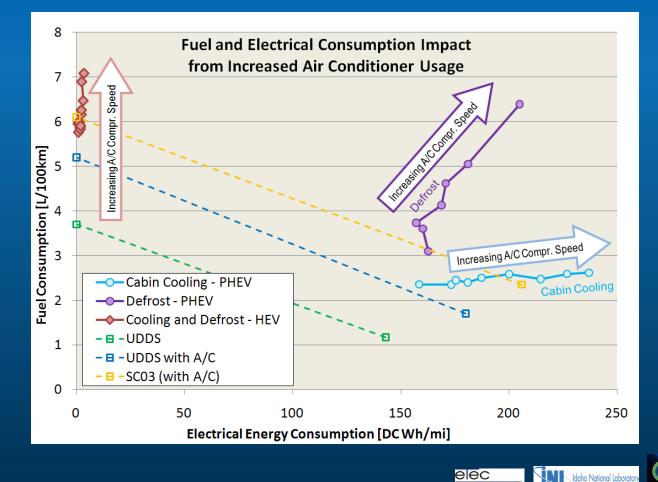
Route Type


Discernable by

- Average Vehicle
 Speed
- Stops per mile
- % time stopped
- For typical driving
 - Strong correlation between average speed and stops per mile

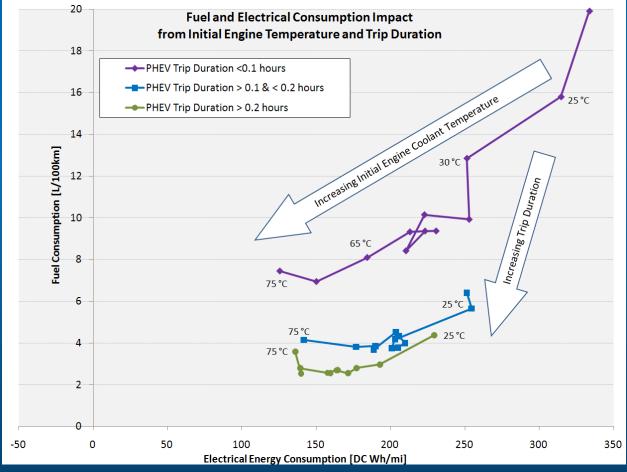
Route Type

- Inflection point around 35 kph and 2 stops/mile
- Lower average speed results in higher fuel consumption and higher electrical consumption
- Higher average speed also results in higher fuel consumption BUT lower electrical consumption



Accessory Utilization – Air Conditioner

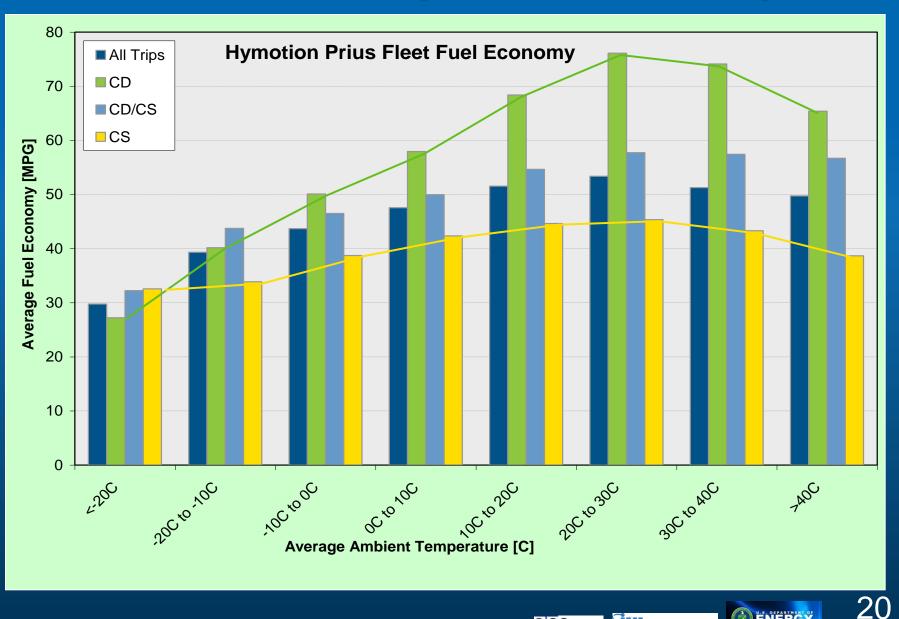
As A/C compressor speed (and load) increases


- CD: Wh/mi increases, minimal change to fuel consump.
- CS: Fuel consumption increases

Engine Warm-up / Start-up

 Total energy consumption dramatically decreases as initial engine temperature increases

 Longer trip duration reduces fuel consumption due to greater time driving with warm engine (less start-up effect)

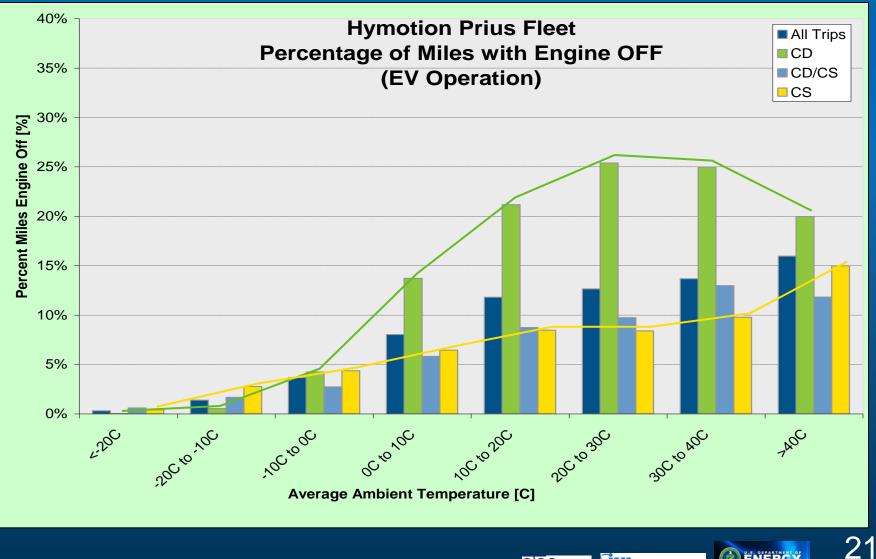

elec

19

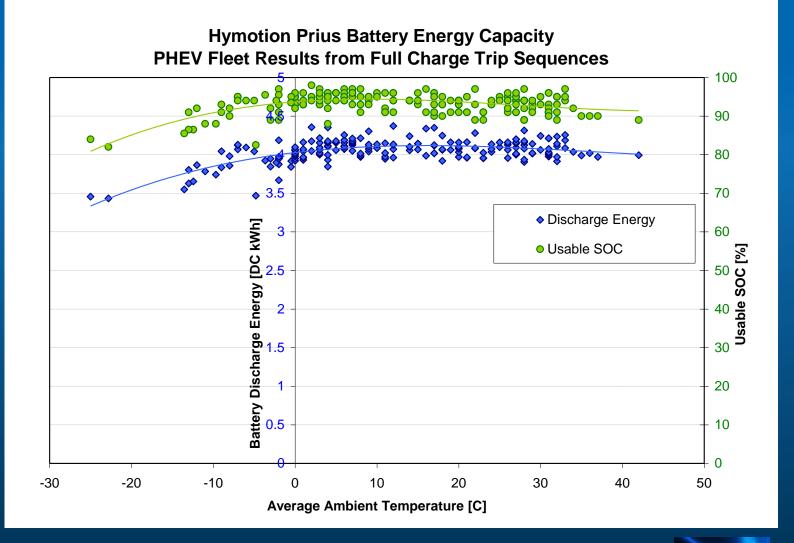
ENERG

Idaho National Laborator

PHEV Ambient Temperature MPG Impacts



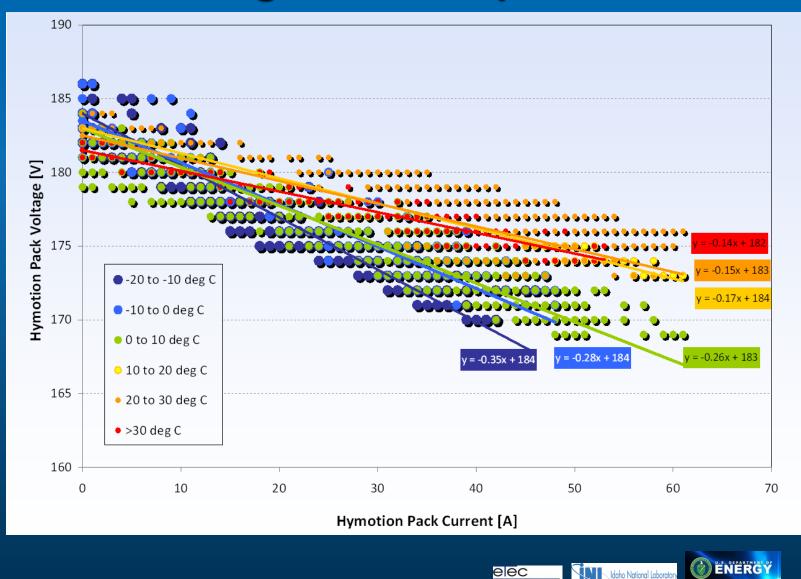
elec



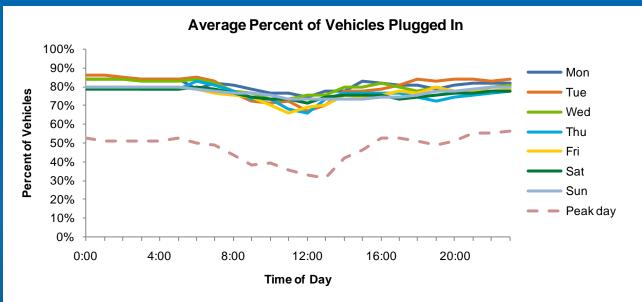
Engine Operation is a Main Factor for PHEV **Fuel Economy Changes**

Usable Battery Capacity is Slightly Effected by Temperature

elec


22

ENERGY

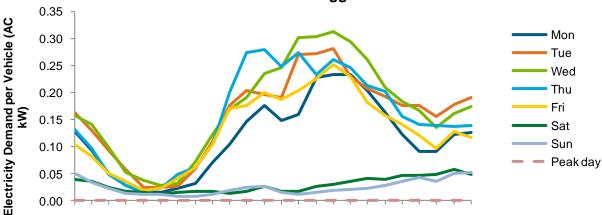

(Z

Idaho National Laborator

Hymotion Li-Ion Battery Internal Resistance Change with Temperature

PHEV Time of Day Charging Demand

Personal-use Vehicles in Private Households (UC Davis Study)


 Data from last week of charging at 67 households

•Uncontrolled charging

Weekday peak occurs between X:00 and X:00

Weekend peak occurs around midnight

Peak day has peak in X:00 hour

12:00

Time of Day

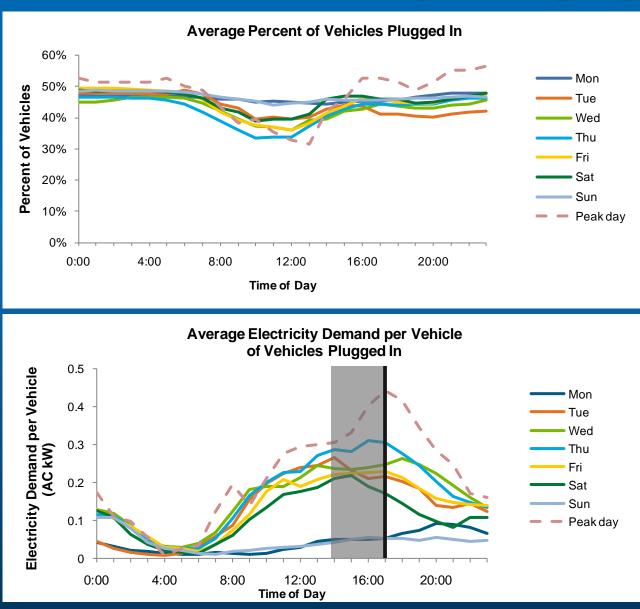
16:00

20:00

elec

0:00

4:00


8:00

Average Electricity Demand per Vehicle of Vehicles Plugged In

PHEV Time of Day Charging Demand

Commercial-use Fleet Vehicles

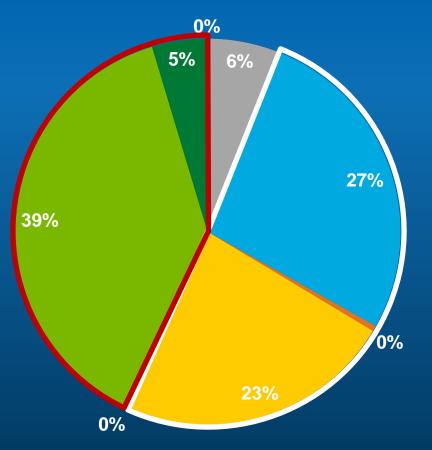
 Data from 6 randomly sampled weeks during 2009

 138 distinct vehicles

Weekday peak occurs between 2:00 and 5:00

Weekend peak occurs around midnight

Peak day has peak in 5:00 hour



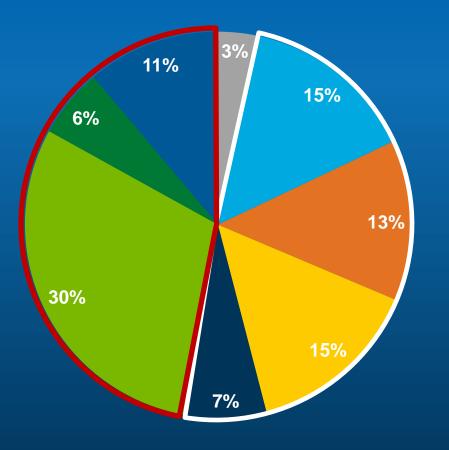
Idaho National Laborator

PHEV Charging Location Personal-use Vehicles in Private Households (UC Davis Study)

Percent of Time Driving, Plugged in, and Parked while Unplugged by Location

Driving

Parked at Primary Charging Location Parked at Non-Primary Charging Location Parked at Location with No **Charging History** Parked at Unknown Location (No GPS Fix) Plugged in at Primary Charging Location Plugged in at Non-Primary **Charging Location** Plugged in at Unknown Location (No GPS Fix)


elec

ENERGY

PHEV Charging Location Commercial-use Fleet Vehicles

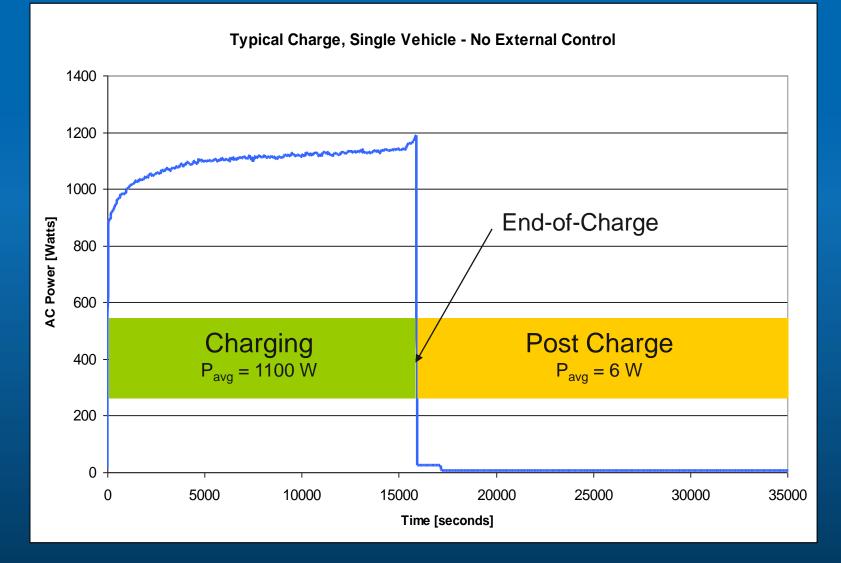
Percent of Time Driving, Plugged in, and Parked while Unplugged by Location

Driving

Parked at Primary Charging Location Parked at Non-Primary **Charging Location** Parked at Location with No **Charging History** Parked at Unknown Location (No GPS Fix) Plugged in at Primary **Charging Location** Plugged in at Non-Primary Charging Location Plugged in at Unknown Location (No GPS Fix)

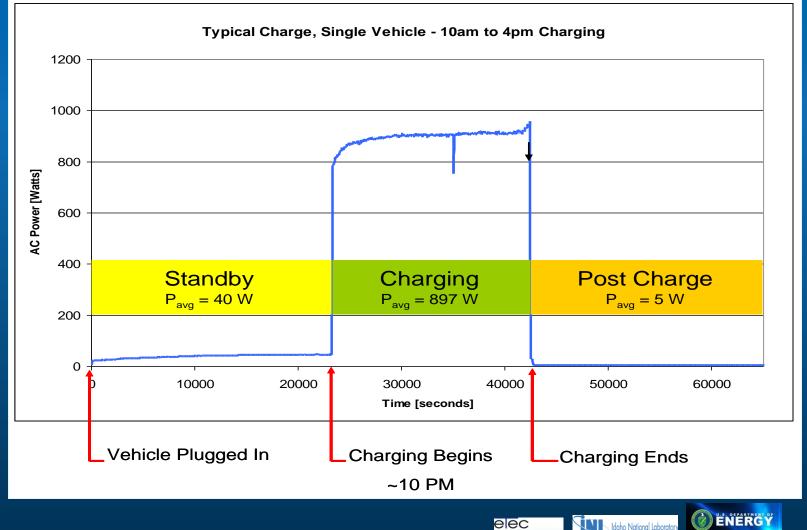
elec

ENERGY

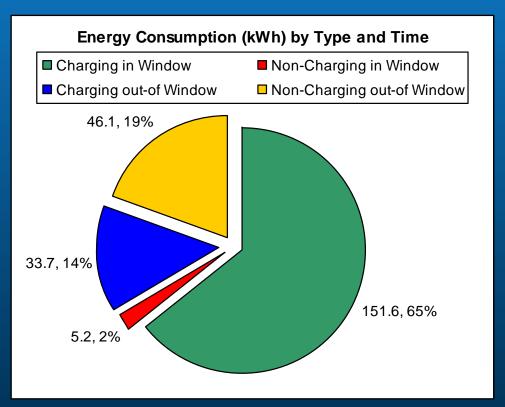

Seattle Area PHEV Smart Charging Trials

- 13 Hymotion PHEVs using GridPoint's Electric Vehicle Management Solution
- Types of trials conducted with GridPoint and Seattle City Light (project lead):
 - <u>Time of Day Charging</u> Vehicle charging only allowed during certain hours of the day
 - <u>Goal Based Charging</u> Normalize power demand for vehicle charging around a kW goal load
 - <u>Economic Charging</u> Allow vehicle charging only when the price of electricity is below a threshold
- GridPoint Vehicle Connectivity Modules (VCM) used to control charging as directed by GridPoint's server and to log vehicle charging and driving data
- VCM requests the pack to wait to charge or to charge at a specified power level - no physical circuit interruption
- INL analyzed the data collected from the vehicles

Charging – No Control



Hymotion Prius PHEV battery from A123 Systems


Results of Time of Day Charging Trials

 VCM establishes communication with control server, requests charging only between 10pm & 4am

Results of Time of Day Charging Trials

- 35% Rogue AC kWh energy drawn outside of allowable charging window:
 - Communication not established or lost charging occurs
 - Cumulative standby energy draw when not charging

Timeline of Electric Drive Vehicle Availability

Conversion PHEVs

AVTA has done extensive testing of vehicles available to date

AVTA is collaborating with auto makers to begin testing OEM PHEVs and BEVs. HEV and conversion PHEV testing continues.

Prototype / Production OEM PHEVs*

Production OEM EVs*

2012

Idaho National Laboratory

2004

2006

2008

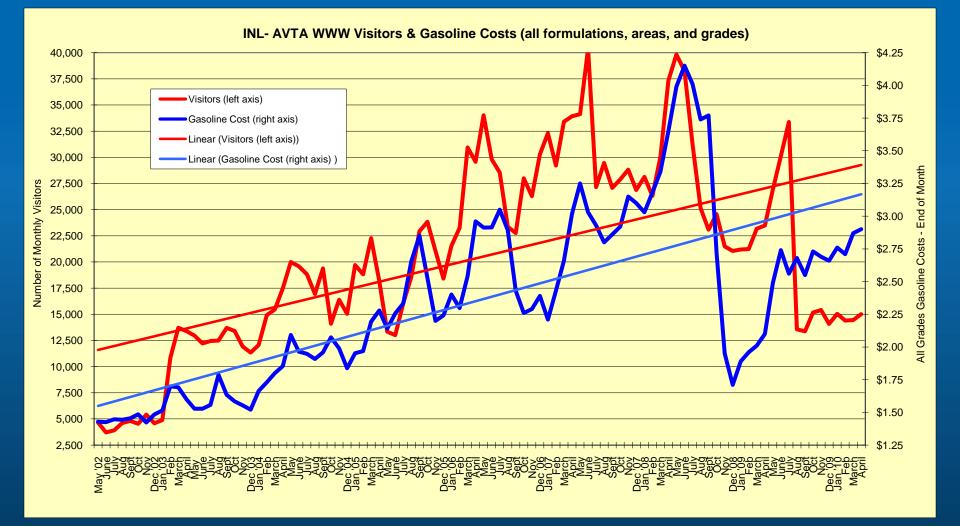
* Refers to PHEVs and BEVs produced for the mass market. OEMs have produced PHEVs and BEVs in low volume intermittently since the 1990's.

2010

AVTA Grid-connected Vehicle Testing

FY10

- Tested first BEV from OEM in 10+ years
- Ford Escape PHEV Prototype
- USPS LLV BEV conversions
 FY11 outlook includes:
- Nissan Leaf BEV
- Chevrolet Volt EREV
- Mitsubishi iMiEV BEV
- THINK City BEV
- Ford Transit Connect, Focus BEVs
- Toyota Prius PHEV
- Others as they become available


	OF ENERGY ADVANCED VEHICLE STING ACTIVITY	PERFORMANCE STATISTICS
		Acceleration (0-50mph) @ 332 lbs Pa At 100% SOC: 8.3 seconds Max Power: 150.2 kW At 50% SOC: 8.5 seconds Max Power: 109.7 kW Performance Goal (0-50mph): 13.5 s
		Maximum Speed © 332 lbs Payload A1 100% SOC: 81.1 mph A1 50% SOC: 80.7 mph Performance Goal: 70 mph
BMW M 2009 1	OTORS	Constant Speed Range 055mph ¹ Range: 129.5 miles Energy Uaed: 30.273 kWh Efficiency: 233.8 Wh-DCmile Specific Energy: 116.4 Wh/kg Charging Energy: 36.14 A CkWh Performance goal: 50 miles
	CIFICATIONS	Constant Speed Range @65mph ¹ Range: 104.15 miles Energy Used: 29.344 kWh Efficiency: 281.7 Wh-DC/mile
BASE VEHICLE: 2009 BMW MINI E Seatbelt Positions: Two Standard Features:	WEIGHTS Design Curb Weight: 3230 lb Delivered Curb Weight: 3306 lb Distribution F/R: 51/49 %	Specific Energy: 112.9 Wh/kg Charging Energy: 35.40 AC kWh
Front Wheel Drive Front Disc and Rear Disc Brakes Regenerative Braking With Coast Down Three-Point Safety Belts Speedometer	GVWR: 3660 lb Payload ² : 354 lb Performance Goal: 400 lb	Driving Cycle Range (UDDS) Range per SAE J1634: 142.45 miles Energy Used: 29.656 kWh Efficiency: 208.2 Wh imile Specific Energy: 114.1 Wh/kg
Odometer State-Of-Charge Meter	DIMENSIONS Wheelbase: 97,1 inches Track F/R: 57,4/57,8 inches Length: 145,6 inches	Charging Energy: 36.86 AC kWh Performance Goal: 60 miles
BATTERY Type: Lithium Ion Number of Modules: 48 Weight of Pack(s): 260 kg Pack(s) Location: Behind the front seats in the rear cargo area	Width: 66.3 inches Height: 55.4 inches Ground Clearance: 6.0 inches Performance Goal: 5.0 inches	Driving Cycle Range (HWY) Range per SAE J1634: 137.34 miles Energy Used: 30.677 kWh Efficiency: 223.4 Wh/mile Specific Energy: 118.0 Wh/kg Charging Energy: 36.86 AC kWh
Nominal System Voltage: 380V	CHARGER	Gradeability:
POWER PLANT Motor Controller: AC Propulsion Type: AC Induction Motor Power: 150 kW (200hp)	Location: On-board Type: Conductive Input Voltages: 120VAC Level 2	Maximum Speed @ 3%: 80.4 mph Maximum Speed @ 6%: 80.3 mph Maximum Grade: 33%
Torque: 220 Nm (162 ft/lb)	Location: Off-board Type: Conductive Input Voltages: 240 VAC	Charging Efficiency: Efficiency: 258.7 Wh-AC/mi Energy Cost: @ \$0.10kWh: \$0.025/mi
		Level 1 Charger (@110V/12A) Time to Recharge to Complete: 26.5 ht
EST NOTES: Vehicle was operated at the specified test speed until the vehic An delivered payload was 354 Lbs.	le could no longer maintain the desired speed.	Level 2 Charger (@240V/32A) Time to Recharge to Complete:4.5 hrs Level 2 Charger (@240V/48A)
Hours were calculated at time that charger indicated completion This vehicle meets all EV America M	n Inimum Requirements listed on back. I Power and Energy Values are DC unless otherwise specified.	Time to Recharge to Complete: 3 hrs

Idaho National Laborator

ENERGY

AVTA Summary – WWW Visitors

Acknowledgement

This work is supported by the U.S. Department of Energy's Vehicle Technologies Program

Additional Information

http://avt.inl.gov

or http://www1.eere.energy.gov/vehiclesandfuels/avta/

INL/MIS-10-19317

elec

